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Summary 

A modified Arrhenius relationship was derived and used to treat simulated accelerated stability data. The results obtained were 

compared to those when the same data were treated according to the traditional method. The modified method presented here is easy 

to apply and in many cases yields a narrower predicted room temperature stability interval than does application of the traditional 

Arrhenius method. 

Introduction 

Stability testing of pharmaceutical dosage forms 
usually begins during the early stages of their 
development, the main purpose being to establish 
a product shelf life. Because room-temperature 
shelf lives may range up to several years in dura- 
tion, stability tests are often performed under 
exaggerated conditions (e.g. elevated tempera- 

tures) to accelerate the degradation process. Infor- 
mation about the room-temperature stability is 
then extrapolated from these accelerated data. The 
extrapolation is possible because of the so-called 
Arrhenius law, which relates the rate constant k 
of a process and the absolute temperature T at 
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which the rate is measured. The Arrhenius law is 
expressed mathematically as: 

k=Z.exp(-EJRT) 

where R denotes the gas constant, E, is the 
energy of activation, and Z is the preexponential 

or frequency factor. 
Although the Arrhenius law holds reasonably 

well in most cases, there are instances when the 
use of a modified form of Eqn 1 is beneficial or 
necessary (Bentley, 1970; Carstensen, 1971; Scher, 
1980; Nash, 1987). Chief among these is the situa- 
tion where limited amounts of stability data are 
available, specifically, when data are generated at 
only a few temperatures (Garrett, 1962; Carsten- 
sen, 1971). The problem in this case is that the 
calculated confidence interval for an extrapolated 
degradation rate constant (and hence, the predic- 
ted stability interval) is often so wide that it is 
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meaningless. Both nonlinear (Ring, 1984) and lin- 
ear (Carstensen, 1978, 1981) modifications of Eqn 
1 have been suggested which often yield narrower 
confidence intervals for extrapolated degradation 

rate constant values than the traditional Arrhenius 
method. Unfortunately, the nonlinear modifica- 

tion is cumbersome to use because it requires 
nonlinear parameter estimation. The linear mod- 

ification is easier to apply; however, there is some 

evidence to suggest that its use is not statistically 

valid (Slater, 1979). The following work was un- 
dertaken in order to assess more fully the utility of 
the linear modification of the Arrhenius equation 
for treating accelerated stability data. 

Theoretical 

In the classical Arrhenius method, degradation 
rate constants calculated from accelerated stability 
data, along with the temperatures at which the 
data are generated, are plotted according to Eqn 
1. The plot is then used to make predictions about 
the room-temperature stability of the product. 
Since the fitting of the original stability data to 
Eqn 1 is not performed directly, errors associated 
with the data are often ignored (Ring, 1984). In 
addition, the total number of data points used in 

the final construction is reduced, with a concom- 
itant decrease in the number of degrees of free- 
dom. It is advantageous, then, to derive a relation- 
ship which uses all of the original accelerated data 

to construct an Arrhenius-type plot. The following 
assumes that the Arrhenius law is followed over 
the temperature range studied. It is further as- 
sumed that degradation occurs via a single path- 
way and follows first-order kinetics. 

For a first-order degradation process, the drug 
content at any time t is given by: 

C= C,.exp(-kt) (2) 

where k is the first-order degradation rate con- 
stant at a particular temperature and C, and C 
represent the drug contents at time t = 0 and t’, 
respectively. Rearrangement of Eqn 2 yields: 

k = (l/t) . ln( C,/C) (3) 

Taking the natural logarithm of both sides of Eqn 
3 and combining with the linear form of Eqn 1 
yields the final result: 

ln( k) = ln((l/t) . ln( Co/C)) 

= -E,/RT+ In(Z) (4) 

Experimental 

Three sets of error-free data were generated 
from the linear form of Eqn 1 using the slope 
(- E,/R) and intercept (In Z) values in Table 1. 

Degradation rate constant values were calculated 
for each slope/intercept data pair at 35, 45 and 

55°C. The percentage of drug remaining after a 
given storage time was calculated using Eqn 2, 
assuming an initial assay value of 100%. Three 
accelerated stability data points were generated 
for each storage temperature. Thus, each error-free 

data set consisted of an initial data point plus nine 
accelerated data points. 

Real accelerated data were simulated by assum- 
ing that each error-free value was the mean value 

of a normally distributed population of values 
from which a sample value was drawn at random. 
A total of 300 sets of random deviates (100 for 
each set of error-free data) from a normally dis- 
tributed population were randomly chosen from a 

table (Natrella, 1966) multiplied by standard de- 
viations of 0.25, 0.50, 0.75, or 1.00, and added to 
the error-free values. This yielded a total of 1200 
data sets - 100 for each of the four population 
standard deviations times three error-free data 
sets. The maximum deviation of the simulated 
data (from the error-free values) ranged from - 3.3 
to +3.6%. 

TABLE 1 

Arrhenius plot parameters of the three error-free dutu sen used rn 

this work 

Data set Slope Intercept 

1 -11550 32.20 

2 -7599 20.07 
3 -8095 21.45 
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Each simulated data set was treated by both the 
traditional and modified methods. Room-temper- 
ature (25 o C) degradation rate constant values were 
extrapolated from plots constructed according to 
Eqns 1 and 4, and 95% confidence intervals were 
calculated for the extrapolated points. The upper 

and lower confidence interval values were used to 
calculate the high and low stability values after 36 

months of room-temperature storage. The success 

of each treatment was judged on the criterion of 

whether the calculated 36 month stability range 

contained the true value, which was calculated 
from the error-free data. 

Results and Discussion 

The difference between the classical Arrhenius 
method (Eqn 1) and the modified procedure (Eqn 

4) is best illustrated by example. A randomly 
chosen set of error-free accelerated stability data 

calculated using the parameters in Table 1 is shown 
in Table 2. The room-temperature degradation 

rate constant value extrapolated from a traditional 
Arrhenius plot constructed from these data is 
0.0014 monthsK’. The 36 month potency at this 
temperature is thus 95%. Because the data in 
Table 2 are error-free, this value is the true potency 
after 36 months of room-temperature storage. 

Simulated accelerated data generated from the 
error-free data in Table 2 are listed in Table 3. 

TABLE 2 

Error-free stability values catculated using the data set I Arrhenius 

plot parameters 

Temperature Time Assay 
(“C) (months) (W) 

_ 0 100.0 
35 4 98.0 
35 8 96.0 
35 12 94.1 
45 2 96.9 
45 4 93.8 
45 6 90.8 
55 2 90.5 
55 3 86.1 
55 4 81.9 

TABLE 3 

Simulated accelerated stability data generated by adding random 

normal deviates u to the values m Table 2 

Temperature 

(“C) 

Time 
(months) 

Assay 

(8) 
_ 

35 

35 

35 

45 

45 

45 

55 

55 

55 

0 

4 

8 

12 

2 

4 

6 

99.8 

98.5 

95.9 

93.7 

96.7 

93.1 

87.8 

89.5 

84.2 

81.8 

a A population standard deviation of 1.0 was assumed. 

Treating these data according to the traditional 
method yields an extrapolated room-temperature 

rate constant of 0.0017 months-‘, with a 95% 

confidence range from 5.6 x lop5 to 0.047 
months-‘. A degradation rate constant confidence 
range from 0.00039 to 0.0018 months-’ is ob- 
tained when the same data are treated by Eqn 4. 
The confidence values calculated via each method 
were used to construct the room-temperature sta- 
bility curves shown in Figs 1 and 2. Although both 
methods yield 36 month stability intervals that 
contain the true value, the attractiveness of the 
modified method is apparent when the interval 
widths are compared. 

Fig. 1. Room-temperature stability plot generated using the 
best and worst degradation rate constant values obtained from 
a traditional plot (Eqn 1) of the data in Table 3. The high and 

low 36 month stability values are indicated. 
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TABLE 4 

Summa~ of the results obtained when the simulated data sets 

were treated by the traditional Arrhenlus method (Eqn 1) and the 

modified method (Eqn 4) 

Normal deviate population 

standard deviation 

Percentage of intervals 

containing the true value 

Eqn 1 Eqn 4 

0.25 (1) d 95 81 

0.25 (2) 100 74 

0.25 (3) 99 86 

0.50 (1) 

0.50 (2) 

0.50 (3) 

0.75 (1) 

0.75 (2) 

0.75 (3) 

1.0 (1) 

1.0 (2) 

1.0 (3) 

95 78 

87 75 

99 85 

93 78 

90 78 

98 89 

89 77 

90 78 

98 88 

‘I Number in parentheses is the error-free data set used to 

generate the simulated data. 

The results obtained by treating all of the 
simulated data sets according to Eqns 1 and 4 are 
summarized in Table 4. For either method to be 
reliable, the 36 month stability interval should 

contain the true value at least 95% of the time, 
since the interval is calculated from the 95% confi- 
dence limits of the degradation rate constant. In 
all cases, the nontraditional method fails a greater 
number of times than expected. This finding is 
consistent with results obtained previously by 
Slater et al. (1979). It should be noted that the 

MONTHS 
Fig. 2. Room-temperature stability plot generated using the 

best and worst degradation rate constant values obtained from 

a modified plot (Eqn 4) of the data in Table 3. The high and 

low 36 month stability values are indicated. 

classical method also fails to provide reliable re- 
sults in several cases. 

A possible reason for the high failure rate of 
the nontraditional method is that it depends 
heavily on the initial assay value. This dependence 
is decreased if the initial assay is treated as an 
unknown, the value of which is determined itera- 
tively, or simply assumed to be 100% (Carstensen, 
1981). The former is accomplished by multiple 
regression following rearrangement of Eqn 4 to 
obtain: 

ln(ln( C,,/C)) = ln( t ) - E,/RT + ln( Z) (5) 

Using iterated values for C,, decreased the re- 
sidual sums of squares obtained when the simu- 
lated data sets were fitted to Eqn 4; however, the 
number of data sets whose 36 month stability 
interval contained the true value decreased. This is 

TABLE 5 

Comparison OJ slopes and stabrlity Internals calculated from Eqn 4 using the original und iterated initial ossa?; oalue.~ 

Data Original initial value 

Set Slope Stability 

interval 

A - 12014 (0.0795) ’ 96.1 - 94.5 

B ~ 11483 (0.0610) 95.6 - 94.4 

c - 10 833 (0.2270) 96.3 - 90.3 

D - 11297 (0.1168) 95.6 - 92.8 

” Number in parentheses is the residual sum of squares. 

Iterated initial value 

Slope 

- 11344 (0.0373) ” 

- 12 002 (0.0460) 

-9947 (0.1786) 

~ 12 244 (0.0920) 

Stability 

interval 

94.6 - 93.7 

96.3 ~ 95.5 

94.0 ~ x7.4 

96.7 - 95.2 
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TABLE 6 

Comparison of slopes and stability intervals calculated from Eqn 4 using the original initial assay value and an assumed initial value of 100 

(The simulated data sets are the same as those m Table 5.) 

Data 

set 

Original initial value 

Slope Stability 

Interval 

Initial value = 100 

Slope Stability 

Interval 

A ’ - 12 014 (0.0795) 96.1 11 - 94.5 - 11911 (0.0703) 95.9 - 94.4 

B - 11483 (0.0610) 95.6 - 94.4 - 11183 (0.0797) 95.3 - 93.4 

C - 10 833 (0.2270) 96.3 - 90.3 - 11158 (0.2616) 97.0 - 90.8 

D - 11297 (0.1168) 95.6 - 92.8 - 11853 (0.0972) 96.3 - 94.4 

’ Number in parentheses is the residual sum of squares. 

apparently due to changes in the the stability 
interval width and the slope of the line fitted to 

the data, which determines the extrapolated value 
about which the stability interval is constructed. 

Examples of how the C, value affects the slope 
and stability interval width are shown in Table 5. 
Decreasing the residual sum of squares (which 

results in a narrower stability interval) is not nec- 
essarily beneficial, especially if the change in the 
slope is such that it yields an extrapolated stability 
that is further removed from the true value. 

Setting C,, = 100% in Eqn 4 also produced 
changes in the stability interval width and the 

slope of the line fitted to the data (Table 6) but 
these variations were not as great as when iterated 
C, values were used. The modified method yielded 
reliable results in all cases when an initial assay of 
100% was assumed (Table 7). Furthermore, the 
average stability interval width obtained using the 

modified method was much less than that given by 
the traditional method. 

Eqn 4 cannot be applied when assay values at 
times t > 0 exceed the initial assay value, since the 
quantity ln[(l/l) . ln(C,/C)] is not defined. This 
problem may arise in situations where the de- 
gradation rate constant is very small and/or the 

TABLE 7 

Summa~ of the results obtained when the simulated data sets were treated wing the traditional Arrhenrur method (Eqn I) and the 

modified method (Eqn 4) (An initial assay value of 100 % was assumed in all calculations) 

Normal deviate population 

standard deviation ’ 

0.25 (1) 
0.25 (2) 
0.25 (3) 
0.50 (1) 
0.50 (2) 
0.50 (3) 
0.75 (1) 
0.75 (2) 
0.75 (3) 
1.0 (1) 
1.0 (2) 
1.0 (3) 

Percentage of intervals Mean 25 o stability interval width h 

containing the true value (n = 100) 

Eqn. 1 Eqn. 4 Eqn. 1 Eqn. 4 

95 97 6.0 (0.521) 1.2 (0.004) 
99 98 11.0 (0.089) 2.0 (0.007) 
99 96 13.9 (0.103) 2.2 (0.007) 
95 95 13.5 (0.140) 2.4 (0.009) 
93 95 20.6 (0.189) 3.9 (0.014) 
97 97 25.3 (0.214) 4.3 (0.014) 
99 95 23.7 (0.239) 3.8 (0.167) 
92 96 31.2 (0.280) 5.9 (0.022) 

100 96 37.7 (0.309) 6.5 (0.022) 
96 96 35.1 (0.313) 5.5 (0.046) 
92 96 40.4 (0.331) 7.9 (0.030) 
99 97 47.0 (0.351) 8.8 (0.032) 

a Number in parentheses is the error-free data set used to generate the simulated values. 

h Number in parentheses is the standard deviation of the mean. 
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sample storage times are relatively short. The 
problem could be handled by simply omitting the 
offending data point(s). Realistically, the initial 
assay should reflect the maximum drug content. A 

more prudent solution, therefore, is to design the 
stability study to ensure that adequate degrada- 

tion takes place in the accelerated samples. 

Conclusion 

A modified Arrhenius method was derived and 
tested on simulated accelarated stability data sets. 
The results indicate that it is valid to use this 
method provided an initial assay value of 100% is 

assumed. The modified method presented here is 
advantageous because it is easier to apply than 
some previously proposed procedures. Further- 
more, this method will, in many cases, yield a 
narrower predicted stability interval for a given set 
of accelerated stability data than the traditional 
Arrhenius method. 
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